Production of cyclopeptibodies with high target affinity and specificity that can be used as a replacement for antibodies


Antibodies find widespread use as therapeutic agents and for diagnostic, imaging, and immunodetection applications. Major limitations of antibodies, however, are their complex structure, limited stability, poor tissue penetration, complex manufacturing process, and associated high costs of production. Despite their numerous and important potential applications, the generation of bispecific antibodies is also challenging. While cyclic peptides are an emerging class of therapeutic agents, existing methods for the preparation of cyclic peptide-antibody conjugates, for example, are laborious and typically low-yielding, require manipulation of the antibody molecule, and can result in varying degrees of heterogeneity of the bioconjugate or undesired reactions with loss in functional activity.

Technology Overview

We have developed methods and compositions for generating and producing cyclopeptibodies, a new class of antibody-like molecules in which a macrocyclic peptide is genetically fused to a carrier protein. This invention also relates to nucleic acid molecules, polypeptides, methods, and preparations for preparing cyclopeptibodies targeted against a protein of interest, and their use for detection, imaging, or modulation of the function of said target protein in vitro and cells.


Cyclopeptibody molecules can be applied as substitutes and replacements for antibodies. Well-known limitations of antibodies are their complex structure, limited stability, complex manufacturing process required for their production, and associated high costs. While functionally equivalent to full-length antibodies, cyclopeptibodies are significantly simpler in structure, much smaller in size (50 kDa vs. 150 kDa), and much easier to produce. As a result, cyclopeptibodies present key advantages such as greater tissue penetration, more facile production in recombinant expression hosts, including bacteria, prolonged in vivo half-life, and high target affinity and specificity.


Therapeutic agents/biologics.

URV Reference Number: 1-22059
Patent Information:
For Information, Contact:
Curtis Broadbent
Licensing Manager
University of Rochester
Rudi Fasan
Yu Gu